
Estimation I:  Estimating the mean of the distribution

Your Challenge:  Estimate the mean, µ , of a random variable Y.  Both the mean, µ , of Y and 
its variance, 2σ , are unknown.   

Your Strategy:  Sample independently n times from the distribution;  use the data to estimate the 
unknown mean. 



Random Sampling, Estimators and Estimates

Ex Ante (estimators as random variables) v. Ex Post (estimates as data): 

• E Ante:  n indept. random draws from the dist. Y .  Each draw is a random variable, iY .   
a. The iY ’s are iid (independently and identically distributed) with distribution Y . 
b. A point estimator of µ  is some function of the observed values of the iY ’s; it's a random 

variable, ex ante… and a number, ex post.   
c. Estimators are rules, which assign different estimates to different drawn samples. 

• Ex Post:  Estimates (data; observations): After we have the sample data { }1 2, , ... , ny y y , 
the estimate is the value of the point estimator for the given sample. 



Here's an Estimator:  The Sample Mean

• ex ante, the sample mean estimator is a random variable, and takes on different values with 
different probabilities, reflecting the random nature of the sampling process:  

1 2
1( , , ..., )n iM Y Y Y Y Y
n

= = ∑ . 

• ex post, and after the sample data are drawn, the sample mean estimator provides us with a 

point estimate:  1 2
1( , , ..., )n iM y y y y y
n

= = ∑ . 



Linear and Unbiased Estimators (LUEs)

• ex ante: 

a. Linear Estimators:  0 1 1 2 2 ... n nM Y Y Yβ β β β= + + + + . 

b. Unbiased:  ( )E M µ=  

c. Linear Unbiased Estimators (LUEs):  Linear & Unbiased 

• ex post:   

a. An estimate, given your sample:  0 1 1 2 2 ... n nm y y yβ β β β= + + + + . 

b. Close or not?  No idea!  But… 

c. Estimates generated in this fashion will on average equal µ  (if M  is an unbiased 
estimator of µ ) 



LUEs for the unknown mean

• Linear Estimators:  0 1 1 2 2 ... n nM Y Y Yβ β β β= + + + + . 

• Expectation:  0 1 2 0 0( ) ... n i iE M β β µ β µ β µ β β µ β µ β= + + + + = + = +∑ ∑ . 

• Unbiased:   0( ) iE M µ β µ β µ= → + = →∑ 0 0β =  and 
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• LUEs:  So the class of LUEs (Linear Unbiased Estimators) for our estimation problem.:  

1 1 2 2 ... n nM Y Y Yβ β β= + + + , where 
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Variance of the LUEs

• Since the iY ’s are pairwise independent, ( , ) 0i jCov Y Y for i j= ≠ , and 
2 2 2

1 1 2 2( ) ( ) ( ) ... ( )n nVar M Var Y Var Y Var Yβ β β= + + + . 

• Since 2( )iVar Y σ=  for each i, 
22( ) iVar M σ β= ∑ …  

• The variance of M depends on the iβ 's and differs across the LUEs. 



Best Linear Unbiased Estimators (BLUE)

BLUE I:   

• The Best Linear Unbiased Estimator (BLUE) will be the estimator in the class of LUEs with 
minimum variance. 

• LUE candidates: 1 1 2 2 ... n nM Y Y Yβ β β= + + + , where 
1
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BLUE:  Find the { }iβ  that minimize the variance within this group/class of estimators. 



LUEs are not Alone!

• There are lots (an infinite number!) of candidate LUEs! 

• 1 1M Y= :  1( )E M µ=  and 2
1( )Var M σ=  

• 2.1 1 2.5 .5M Y Y= + :  2.1( )E M µ=  and 
2 2 2 2 2 2

2.1
2( ) .5 .5 / 2
4

Var M σ σ σ σ= + = =  

• 2.2 1 2(1 )M Y Yβ β= + − : 

a. 2.2( )E M µ=  and 2 2 2 2
2.2( ) (1 )Var M β σ β σ= + −  

{ }2 2 2(1 )σ β β= + −  

b. So to minimize 2.2( )Var M , set .5β = . 
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More Candidate LUEs
• 3.1 1 2 3(1/ 3) (1/ 3) (1/ 3)M Y Y Y= + + :  3.1( )E M µ=  and 

2 2 2 2 2 2
3.1( ) (1/ 3) (1/ 3) (1/ 3)Var M σ σ σ= + + 2 23 / 3

9
σ σ= =  

• Here’s what the distributions of the equally weighted sample means (with different sample 
sizes… so 1 2.1 3.1, , ...M M M  ) look like…. Assuming (0,1)Y N : 

 
As the sample size increases, the distribution of the sample mean becomes more and more tightly 
concentrated around the true unknown mean, µ  . 
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BLUE II:  The optimization problem
• To find the BLUE estimator of the unknown mean µ , we need to solve the following 

optimization problem: 

min 22( ) iVar M σ β= ∑  subject to 
1

1
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=∑ . 

 

• Solution:  * 1 1, ...,i for i n
n

β = = , and  1
iM Y Y

n
= = ∑ .   

• The Sample Mean is BLUE! 
 



BLUE III:  Wrapup/Review

• Since the Sample Mean is unbiased and has minimum variance in the class of LUE's, it is a 
BLUE 

• (ex ante) Estimators are random variables, taking on different values depending on the drawn 
sample. 

a. 1
iM Y Y

n
= = ∑ , is a random variable (values depend on the actual sample) 

• (ex post) Estimates are numbers, the value of the estimator for our particular drawn sample 
(set of observations). 

a. For a particular sample { }1 2, , ... , ny y y , 1
im y y

n
= = ∑ .  Close to µ ?  No clue! 

b. But on average, estimates generated in this fashion will equal µ , since M Y=  is an 
unbiased estimator of µ  (or ( )E M µ= ). 



Blessed estimators generate, by definition, blessed estimates

• We bless estimates not because we know them to be specifically praiseworthy, but rather 
because we praise the process/rule/estimator that generated the estimate.   

Or put differently:   

• We can say something about the quality of estimator… but we don’t have much to say about 
the quality of specific estimates, unless of course, we perhaps know something about the 
representativeness of our sample.  



Confidence intervals as interval estimators

• Interval estimators: Estimates are intervals (a range of values) rather than points (specific 
values).   

• The most common interval estimator is the Confidence Interval: 

a. ( )1 2, , nL l Y Y Y=  , a point estimator;  the lower bound of the confidence interval 

b. ( )1 2, , nU u Y Y Y=   is its upper bound. 

c. L and U are both random variables, taking on different values with different samples 

d. The randomly generated confidence interval [L,U] is an interval estimator 

e. If say, 95% of the time intervals generated in this fashion contain the true mean µ , then 
we say that we have a 95% Confidence Interval (estimator) for µ . 

f. Is µ  in the particular CI given your sample, ˆ ˆ,L U   ?  No idea!  But 95% of the time it 

will be! 



Sample statistics as estimators

• Mean:  The sample mean, 1
iY Y

n
= ∑ ,  is an unbiased estimator (in fact, it’s BLUE) of the 

mean of Y, µ  .  ( ) ( )E Y E Y µ= = . 

a. The particular estimated sample mean is 1
iy y

n
= ∑ . 



More Estimators: Sample variance and standard deviation

• Variance:  The sample variance, 2 21 ( )
1YY Y iS S Y Y

n
= = −

− ∑  

a. An unbiased estimator of the variance of Y, 2σ , when the mean of Y is unknown;  
2( ) ( )YYE S Var Y σ= = . 

b. We divide by n-1 to generate an unbiased estimator. 

c. The particular estimated sample variance is 2 21 ( )
1yy y iS S y y

n
= = −

− ∑ . 

• Standard deviation: The sample standard deviation is the square root of the sample 

variance, Y YYS S=  21 ( )
1 iY Y

n
= −

− ∑ .   

a. Generally a biased estimator of the standard deviation of Y, Yσ . 

b. The particular estimated standard deviation is 21 ( )
1y iS y y

n
= −

− ∑ . 



Even More Estimators:  Sample covariance & correlation

• Covariance:  The sample covariance, 1 ( )( )
1XY i iS X X Y Y

n
= − −

− ∑  

a. It is an unbiased estimator of the covariance of X and Y, ( ) ( , )XY XYE S Cov X Y σ= = , 
when the means of X and Y ( X Yandµ µ ) are unknown. 

b. The particular estimated sample covariance is 1 ( )( )
1xy i iS x x y y

n
= − −

− ∑ . 

• Correlation:  The sample correlation estimator, XY
XY

X Y

S
S S

ρ =  

a. Generally a biased estimator of the correlation of X and Y, ( , ) XY
XY

X Y

corr X Y
σ

ρ
σ σ

= = . 

The particular estimated sample correlation is xy
xy

x y

S
S S

ρ = . 
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