Estimation |: Estimating the mean of the distribution

Your Challenge: Estimate the mean, x, of a random variable Y. Both the mean, «, of Y and
its variance, o, are unknown.

Your Strategy: Sample independently n times from the distribution; use the data to estimate the
unknown mean.

ARAR T | | DONT PaNic-THERES A | NOW DOUBLE. | 30 SECONDS HAVE. GONE. BY
50 BAD AT | | SMPLE TRICK For THAT | T AGAIN. ADD | AND ybu'VE. DONE NOTHING BUT

ESTIMATING * FIVE MINUTES. | DoUBLE. IMAGINARY NUMBERS!
HoULoNG || AR JORTOS | e ima | YOURE MARING Mo PROGRESS
PROJELTS THEN DOOBE.T THROTHME. | AND WILL NEVER FiNISH!
HILLTAE. | wiic: AAAAPAS
) % Y. mawrﬂc'
OkAY, BUT= AN ﬁﬂﬁﬁﬂﬁﬂ’

et f%ﬁ %:._j?




Random Sampling, Estimators and Estimates

Ex Ante (estimators as random variables) v. Ex Post (estimates as data):

e E Ante: nindept. random draws from the dist. Y . Each draw is a random variable, Y, .
a. The Y.’s are iid (independently and identically distributed) with distribution Y .
b. A point estimator of x is some function of the observed values of the Y.’s; it's a random
variable, ex ante... and a number, ex post.
c. Estimators are rules, which assign different estimates to different drawn samples.
e EXx Post: Estimates (data; observations): After we have the sample data {yl, Yoy oo yn},
the estimate is the value of the point estimator for the given sample.



Here's an Estimator: The Sample Mean

ex ante, the sample mean estimator is a random variable, and takes on different values with
different probabilities, reflecting the random nature of the sampling process:

M(Y,,Y,, ... Y.) :V:%Z\q .

ex post, and after the sample data are drawn, the sample mean estimator provides us with a

point estimate: M (Yy,,Y,,...¥,) =Yy = lz Y, .
N




Linear and Unbiased Estimators (LUES)

e exante:
a. Linear Estimators: M =g, + BY, +B,Y, +...+B.Y,.
b. Unbiased: E(M)=u
c. Linear Unbiased Estimators (LUES): Linear & Unbiased
e ex post:
a. An estimate, given your sample: m= g, + 8y, +5,Y, +...+ LY. .

b. Close or not? No idea! But...

c. Estimates generated in this fashion will on average equal « (if M is an unbiased
estimator of 1)



LUESs for the unknown mean

Linear Estimators: M =g, + BY, + Y, +..+ B.Y. .
Expectation: E(M) =4, + i+ fou+...+ fyp = f +Zﬂiﬂ = Po +ﬂ2ﬂi :
Unbiased: EM)=pu— By +u) fi=u— f=0and > g =1

i=1

LUESs: So the class of LUESs (Linear Unbiased Estimators) for our estimation problem.:

M = BY, + Y, +..+ B,Y,, where > 3 =1.
i=1



Variance of the LUEsS

Since the Y; ’s are pairwise independent, Cov(Y;,Y;)=0 fori= j, and
Var(M) = g2var(Y,) + g,°Var(Y,) +...+ B *Var(Y,).

Since Var(Y,) = o° foreach i, |Var(M) = GZZ,BiZ

The variance of M depends on the £.'s and differs across the LUEs.



Best Linear Unbiased Estimators (BLUE)

BLUE I:

e The Best Linear Unbiased Estimator (BLUE) will be the estimator in the class of LUEs with
minimum variance.

e LUE candidates: M = BY, + B,Y, +...+ B.Y,, where > B =1,
=1

BLUE: Find the {£,} that minimize the variance within this group/class of estimators.



LUES are not Alone!

There are lots (an infinite number!) of candidate LUES!
M,=Y,: E(M,)=u and Var(M,) = ¢*
M,, =.5Y,+.5Y,: E(M,,)=x and

Var(M,,) =.5’c° +.5°c° =%02 =o0°/2

M,, = BY, +({1-P)Y,:
a. E(M,,)=ux and Var(M,,) = pic’+(1-p)c’
=’ {f7+(1-pB)*|

b. So to minimize Var(M,,), set f=.5.




More Candidate LUES

o M, =(/3)Y,+(1/3)Y,+(1/3)Y,: E(M,,)=y and

Var(M,,) = (1/3)*c*+(1/3)°c* +(1/3)°c’ = gaz =0°/3

e Here’s what the distributions of the equally weighted sample means (with different sample
sizes... so M,;,M,,,M,,... ) look like.... Assuming Y ~ N(0,1) :
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As the sample size increases, the distribution of the sample mean becomes more and more tightly
concentrated around the true unknown mean, z .



BLUE Il: The optimization problem

e To find the BLUE estimator of the unknown mean ., we need to solve the following
optimization problem:

min Var(M) =022ﬂi2 subjectto > B =1.
i=1

b,+b,=1
slope=-1N
Y

e Solution: ,Bi*:E fori=1..,n,and M =\7=£ZYi.
n n

e The Sample Mean is BLUE!




BLUE lll: Wrapup/Review

Since the Sample Mean is unbiased and has minimum variance in the class of LUE's, it is a
BLUE

(ex ante) Estimators are random variables, taking on different values depending on the drawn
sample.

a. M=Y = 1 Y. , Is a random variable (values depend on the actual sample)

(ex post) Estimates are numbers, the value of the estimator for our particular drawn sample
(set of observations).

a. Foraparticular sample {y,, ¥,, ..., ¥, !, mzyzizm. Close to #? No clue!
N

b. But on average, estimates generated in this fashion will equal 4, since M =Y isan
unbiased estimator of x4 (or E(M) = 1 ).



Blessed estimators generate, by definition, blessed estimates

e \We Dbless estimates not because we know them to be specifically praiseworthy, but rather
because we praise the process/rule/estimator that generated the estimate.

Or put differently:

e \We can say something about the quality of estimator... but we don’t have much to say about
the quality of specific estimates, unless of course, we perhaps know something about the
representativeness of our sample.




Confidence intervals as interval estimators

e Interval estimators: Estimates are intervals (a range of values) rather than points (specific
values).

e The most common interval estimator is the Confidence Interval:

a. L=I(Y,,Y,,...Y,), apoint estimator; the lower bound of the confidence interval

b. U=u(Y,Y,,...Y,) is its upper bound.

c. L and U are both random variables, taking on different values with different samples
d. The randomly generated confidence interval [L,U] is an interval estimator

e. If say, 95% of the time intervals generated in this fashion contain the true mean ., then
we say that we have a 95% Confidence Interval (estimator) for .

f. Is u inthe particular CI given your sample, [I:,lj]? No idea! But 95% of the time it

will be!



Sample statistics as estimators

e Mean: The sample mean, Y = lZYi , 1s an unbiased estimator (in fact, it’s BLUE) of the
n

meanof Y, . E(Y)=E(Y)=u.

a. The particular estimated sample mean is y = EZ Y. .
n
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More Estimators: Sample variance and standard deviation

Variance: The sample variance, S, =S2 = %Z(Yi -Y)*
n —

a. An unbiased estimator of the variance of Y, o, when the mean of Y is unknown:
E(S,,)=Var(Y)=0".

b. We divide by n-1 to generate an unbiased estimator.

c. The particular estimated sample variance Is S, = Sj = iZ(yi -v)*.
n —

Standard deviation: The sample standard deviation is the square root of the sample
variance, S, =./S,, = %Z(Yi ~Y)?.
n —

a. Generally a biased estimator of the standard deviation of Y, o, .

b. The particular estimated standard deviation is S, = —Z(Y. v)°.



Even More Estimators: Sample covariance & correlation

e Covariance: The sample covariance, S,, = %Z(Xi — X)(Y, =Y)
n —_

a. Itis an unbiased estimator of the covariance of X and Y, E(S,,) =Cov(X,Y) =o,,,
when the means of X and Y (, and g, ) are unknown.

b. The particular estimated sample covariance is S, = ﬁZ(xi -X)(y: -Y).

XY

e Correlation: The sample correlation estimator, p,, =

SXSY
. . : o)
a. Generally a biased estimator of the correlation of X and Y, corr(X,Y) = p,, =—>—.
Ox Oy
. . . . Sxy
The particular estimated sample correlation is p,, = S5

Xy




	 Estimation I:  Estimating the mean of the distribution
	 Random Sampling, Estimators and Estimates
	 Here's an Estimator:  The Sample Mean
	 Linear and Unbiased Estimators (LUEs)
	 LUEs for the unknown mean
	 Variance of the LUEs
	 Best Linear Unbiased Estimators (BLUE)
	 LUEs are not Alone!
	More Candidate LUEs
	BLUE II:  The optimization problem
	 BLUE III:  Wrapup/Review
	Blessed estimators generate, by definition, blessed estimates
	Confidence intervals as interval estimators
	 Sample statistics as estimators
	 More Estimators: Sample variance and standard deviation
	 Even More Estimators:  Sample covariance & correlation

